
INST326: Object-Oriented Programming

Course Syllabus (v2.0)

Spring 2020 – Section 101 – Hornbake Library (HBK) 0302H – MWF 1-1:50

1 Instructor
Name: Joshua A. Westgard, PhD
Email: westgard@umd.edu
Phone: 301-405-9136 (office)
Office: B0225 McKeldin Library

Office Hours: MWF 1-2 pm, and by appointment

2 Catalog Description
This course is an introduction to programming, emphasizing understanding and implementation of ap-
plications using object-oriented techniques. Topics to be covered include program design and testing as
well as implementation of programs. Prerequisite: (must have completed or be concurrently enrolled in
INST201; or INST301); and (INST126; or CMSC106; or CMSC122). Or permission of instructor. Credit
only granted for: INST326 or CMSC131.

3 Extended Course Description
This course covers (1) the core features of the Python programming language, (2) using programs to
collect, process, and analyze data, and (3) object-oriented programming. Object-oriented programs are
built as collections of “objects”, which are software representations of real-world entities and concepts.
Objects combine data (attributes) with functionality (methods), and work through communicating with
each other as the code is executed. By encapsulating code complexity within objects, OOP allows use
and reuse of existing code in a relatively simple and easy manner. Advanced OOP concepts such as
inheritance facilitate development of complex code without sacrificing robustness and possibility of code
reuse. We apply computational thinking approaches such as abstraction, decomposition, algorithmic design,
generalization, evaluation, and debugging.

This course also provides opportunities to develop an understanding of how programming is situated in
and reflects broader social structures, constructs and issues, e.g. race, class or gender. Programming is
often viewed as a value-neutral technical skill. However, the social and cultural impacts of information
and technology are central concepts in our field, and the growing awareness of issues like algorithmic
bias, ethical/unethical uses of algorithms and disparities in opportunities in tech jobs require that any
informed professional needs to understand the larger context of programming. This is important to be
ethical professionals and to be successful in the workplace. Through readings, discussion and writing, we
will critically examine issues of racism, sexism and other forms of power and oppression that are pervasive
in programming and related technical activities, and discuss what companies and individuals are doing to
improve programming practices and professional work environments.

1

mailto:westgard@umd.edu


4 Student Learning Outcomes
After finishing this course, students will be able to:

1. Design, program, and debug Python applications to solve non-trivial problems;

2. Write scripts to collect, process, and/or analyze data;

3. Explain OOP concepts, principles, design patterns and methods;

4. Test and assess code quality;

5. Write clear and effective documentation;

6. Explain how programming is situated in and reflects social issues (e.g. racism, classism, ableism, or
sexism) and describe actions that individuals or organizations are taking to counteract disparities
and inequities.

5 Teaching Notes
This course assumes a basic understanding of procedural programming, and begins with a comprehensive
review of Python fundamentals—including data types, variables, loops, and conditionals—that is designed
to deepen your mastery of these concepts. The first part of the course will thus be an opportunity to
consolidate and extend what was covered in INST126. Alternatively, if you have worked with a language
such as JavaScript, Java, C#, or Visual Basic, you should be able to apply that knowledge to learning
Python. The later parts of the course will cover certain topics in program design and programming best
practices (documentation, testing, etc.) that are a necessary part of producing complex, reliable, and
maintainable applications.

If you have a strong foundation in Python programming already, and are interested in being challenged, I
invite you to talk to me about leading a session (it’s really true that you learn more by teaching), identifying
more challenging exercises, or developing a more ambitious project. I want you to learn as much as you
can from this course.

The course is divided into weekly modules, and will typically follow this pattern, with some excep-
tions:

• Before class (preparation):

– Do assigned readings and/or watch assigned videos;

– Complete any online worksheets, exercises, or quizzes that are due.

• In class:

– On the first day of each module (usually Monday), we will have a lecture to introduce the topic;

– On the second day (usually Wednesday), we will have a mix of Q&A, whiteboarding, and other
hands-on activities, generally working together;

– On the third day (usually Friday), we will have a lab activity designed to help you apply what
you have learned independently;

– Quizzes may be administered in class;

– Each midterm exam will include both an in-class and take-home section.

• After class (programming homework):

– There will be five homework assignments to help you apply, reflect and extend your understand-
ing by working on a practical task;

2



– All homework assignments are to be completed on your own unless otherwise stated on the
assignment hand-out.

Over the course of the semester, we will also examine selected broader issues of programming and coding—
-the social and organizational context, issues related to gender, race, disability, etc. This will help you
prepare for situations that you are likely to encounter in your professional work. These are noted in the
schedule as ”Critical Reflections.”

Here is my suggested general strategy for working on assignments:

1. Start early—don’t wait. That will give you time to work through the problems and get help as
needed.

2. Plan out your solution, but follow the incremental coding procedure as you implement it. Incremental
coding means getting a version that does some small part of the whole task, and then adding to it
step by step, testing each time you add something. This approach makes it much easier to locate
problems, and you’ll be able to see the data changing as you go.

3. Read error messages carefully and try to understand what they are telling you. Often they will point
you directly to the cause of the error.

4. If the solution is not immediately obvious, spend an additional 5-10 minutes trying to solve it on
your own, but then take a break. Sometimes this will allow you to come back and see something you
missed.

5. If you’ve spent 20-30 minutes and still are stuck—ask for help! You can contact me via email or
discussion board. Please provide as much information as you can. Often it helps to include a
screenshot with the problem. I will respond as soon as I am able, usually within a day.

6. If you see a question on the discussion board that you can answer, or if you have an idea, please
respond. Don’t wait for me. You will be helping your colleagues.

6 Textbooks & Readings
There is no book required for this course, but we will make use of the following open-source texts:

• Charles R. Severance, Python for Everybody: Exploring Data Using Python 3 ISBN-13: 978-1530051120
http://py4e.com

• The Python Tutorial, v3.7.2, Python Software Foundation https://docs.python.org/3/tutorial/

index.html

• Object-Oriented Programming in Python, University of Cape Town https://www.cs.uct.ac.za/

mit_notes/python/

Other readings (generally available online, or through Library subscriptions) may be assigned as needed.

7 Required Technology
• Laptop: We will do programming in class, so bring your laptop and be prepared to write code. Any

current OS can be used. If you do not have access to a laptop, contact me immediately.

• Python: The Python interpreter (version 3), freely available from https://www.python.org/downloads.*

• Code Editor: An advanced text editor (such as Sublime Text, Notepad++, or BBEdit) and/or an
integrated development environment (such as VSCode, Eclipse, or PyCharm).*

*Please note that we will install all necessary environments together in class during the first week.

3

http://py4e.com
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://www.cs.uct.ac.za/mit_notes/python/
https://www.cs.uct.ac.za/mit_notes/python/
https://www.python.org/downloads


8 Grading
Your final grade for the course is computed as the sum of your scores on the individual elements below
(100 possible points total), converted to a letter grade:

A+ 97-100
A 93-96.99
A- 90-92.99

B+ 87-89.99
B 83-86.99
B- 80-82.99

C+ 77-79.99
C 73-76.99
C- 70-72.99

D+ 67-69.99
D 63-66.99
D- 60-62.99

F 0-59.99

Final grades will be calculated based on the following components:

Module Exercises/Quizzes (22, drop two lowest) 20 points
Homework (5) 25 points
Midterms (2) 20 points
Final Project 15 points
Reflections (3) 10 points
Participation 10 points

TOTAL 100 points

9 University Course Policies
The essential purpose of the university’s undergraduate course policies is to enable all of us to fully
participate in an equitable, accessible and safe academic environment so that we each can be challenged
to learn and contribute most effectively. They address issues such as academic integrity, codes of conduct,
discrimination, accessibility, learning accommodations, etc. We are all responsible for following the policies
at http://www.ugst.umd.edu/courserelatedpolicies.html. You must read them and send me any questions
by the first week of classes.

10 Late Work
Submission instructions are provided with each assignment, but as a general rule the on-time submission
window will close in ELMS at midnight on the date due. If you have to miss a deadline, you should inform
me as soon as possible, indicating the reason and when you propose to submit your work. If you have a
legitimate reason, such as a major medical or family emergency, I may agree to an extension or makeup
work. Documentation of the emergency (e.g. a doctor’s letter) may be required.

11 Syllabus Revision Policy
This syllabus is a guide for the course and is subject to change with advance notice. Changes will be posted
in ELMS. The ELMS course site together with the course OER website, are the definitive locations for all
course materials, communication, assignments, and deadlines.

4

http://www.ugst.umd.edu/courserelatedpolicies.html


12 Course Schedule
The following table shows the current projected schedule. The course content can be roughly divided into
three interrelated units:

• Unit 1: Procedural Programming Review Using Python (∼weeks 1-6)

• Unit 2: Object-Oriented Programming Using Python (∼weeks 7-11)

• Unit 3: Data Analysis Using Python (∼weeks 12-16)

Week Monday Wednesday Friday

1
01/27 Introduction:

Syllabus & Overview
01/29 Module 1:

Fundamentals
01/31 Module 1:

Fundamentals

2
02/03 Module 2:

Functions & Iteration
02/05 Module 2:

Functions & Iteration
02/07 Module 2:

Functions & Iteration

3
02/10 Module 3:

Data Types
02/12 Module 3:

Data Types
02/14 Module 3:

Data Types

4
02/17 Module 4:
Serialization &

File I/O

02/19 Module 4:
Serialization &

File I/O

02/21 Module 4:
Serialization &
File I/O HW1

5
02/24 Module 5:

Regular Expressions
02/26 Module 5:

Regular Expressions
02/28 Module 5:

Regular Expressions

6
03/02

Critical Reflection #1
03/04

Catch up & Review
03/06

Midterm #1

7
03/09 Module 6:

OOP Fundamentals
03/11 Module 6:

OOP Fundamentals
03/13 Module 6:

OOP Fundamentals HW2

8
03/16

SPRING BREAK
03/18

SPRING BREAK
03/18

SPRING BREAK

9
03/23

EXTENDED BREAK
03/25

EXTENDED BREAK
03/27

EXTENDED BREAK

10
03/30 Ramp Up:

Get to know zyBooks
04/01 Ramp Up:

First Zoom Webinar/Lecture
04/03 Ramp Up:

Open Zoom ”Office Hour”

11
04/06 Module 7:

Inheritance &
Composition

04/08 Module 7:
Inheritance &
Composition

04/10 Module 8:
Packaging &

Distributing Code

12
04/13 Module 8: Packaging &

Distributing Code HW3
04/15 Module 8: Packaging &

Distributing Code
04/17 Midterm #2
(Take Home Only)

13
04/20 Project Work Day
Critical Reflection #2

04/22 Module 9:
Databases and SQL

04/24 Module 9:
Databases and SQL

14
04/27 Project Work Day

HW4
04/29 Module 10:
Data on the Web

05/01 Module 10:
Data on the Web

15
05/04 Project Work Day
Critical Reflection #3

05/06 Module 11:
Data Analysis

05/08 Module 11:
Data Analysis HW5

16
05/11

Course Wrap-Up
05/15 No Class

Projects Due 11:59pm

5


	Instructor
	Catalog Description
	Extended Course Description
	Student Learning Outcomes
	Teaching Notes
	Textbooks & Readings
	Required Technology
	Grading
	University Course Policies
	Late Work
	Syllabus Revision Policy
	Course Schedule

