
INST326: Object-Oriented Programming

Course Syllabus

Fall 2019 – Section 103 – Hornbake Library (HBK) 0115 – MWF 1-1:50

1 Instructor
Name: Joshua A. Westgard, PhD
Email: westgard@umd.edu
Phone: 301-405-9136 (office)
Office: B0225 McKeldin Library

Office Hours: M 11-12, W 3-4, and by appointment

2 Catalog Description
This course is an introduction to programming, emphasizing understanding and implementation of ap-
plications using object-oriented techniques. Topics to be covered include program design and testing as
well as implementation of programs. Prerequisite: (must have completed or be concurrently enrolled in
INST201; or INST301); and (INST126; or CMSC106; or CMSC122). Or permission of instructor. Credit
only granted for: INST326 or CMSC131.

3 Extended Course Description
This course covers (1) the core features of the Python programming language, (2) using programs to
collect, process, and analyze data, and (3) object-oriented programming. Object-oriented programs are
built as collections of “objects”, which are software representations of real-world entities and concepts.
Objects combine data (attributes) with functionality (methods), and work through communicating with
each other as the code is executed. By encapsulating code complexity within objects, OOP allows use
and reuse of existing code in a relatively simple and easy manner. Advanced OOP concepts such as
inheritance facilitate development of complex code without sacrificing robustness and possibility of code
reuse. We apply computational thinking approaches such as abstraction, decomposition, algorithmic design,
generalization, evaluation, and debugging.

This course also provides opportunities to develop an understanding of how programming is situated in
and reflects broader social structures, constructs and issues, e.g. race, class or gender. Programming is
often viewed as a value-neutral technical skill. However, the social and cultural impacts of information
and technology are central concepts in our field, and the growing awareness of issues like algorithmic
bias, ethical/unethical uses of algorithms and disparities in opportunities in tech jobs require that any
informed professional needs to understand the larger context of programming. This is important to be
ethical professionals and to be successful in the workplace. Through readings, discussion and writing, we
will critically examine issues of racism, sexism and other forms of power and oppression that are pervasive
in programming and related technical activities, and discuss what companies and individuals are doing to
improve programming practices and professional work environments.

1

mailto:westgard@umd.edu


4 Student Learning Outcomes
After finishing this course, students will be able to:

1. Design, program, and debug Python applications to solve non-trivial problems;

2. Write scripts to collect, process, and/or analyze data;

3. Explain OOP concepts, principles, design patterns and methods;

4. Test and assess code quality;

5. Write clear and effective documentation;

6. Explain how programming is situated in and reflects social issues (e.g. racism, classism, ableism, or
sexism) and describe actions that individuals or organizations are taking to counteract disparities
and inequities.

5 Teaching Notes
This course assumes a basic understanding of procedural programming, and begins with a comprehensive
review of Python fundamentals—including data types, variables, loops, and conditionals—that is designed
to deepen your mastery of these concepts. The first part of the course will thus be an opportunity to
consolidate and extend what was covered in INST126. Alternatively, if you have worked with a language
such as JavaScript, Java, C#, or Visual Basic, you should be able to apply that knowledge to learning
Python. The later parts of the course will cover certain topics in program design and programming best
practices (documentation, testing, etc.) that are a necessary part of producing complex, reliable, and
maintainable applications.

If you have a strong foundation in Python programming already, and are interested in being challenged, I
invite you to talk to me about leading a session (it’s really true that you learn more by teaching), identifying
more challenging exercises, or developing a more ambitious project. I want you to learn as much as you
can from this course.

The course is divided into weekly modules, and will typically follow this pattern, with some excep-
tions:

• Before class (preparation):

– Do assigned readings and/or watch assigned videos;

– Complete any online worksheets, exercises, or quizzes that are due.

• In class:

– On the first day of each module (usually Monday), we will have a lecture to introduce the topic
of the module;

– On the second day (usually Wednesday), we will have a mix of lecture, group whiteboarding,
and hands-on activities;

– On the third day (usually Friday), we will have a lab activity designed to help you apply what
you have learned independently;

– Quizzes may be administered online in class;

– Each midterm exam will include both an in-class and take-home section.

• After class (programming homework):

2



– There will be five homework assignments to help you apply, reflect and extend your understand-
ing by working on a practical task;

– All homework assignments are to be completed on your own unless otherwise stated on the
assignment hand-out.

Over the course of the semester, we will also examine selected broader issues of programming and coding—
-the social and organizational context, issues related to gender, race, disability, etc. This will help you
prepare for situations that you are likely to encounter in your professional work. These are noted in the
schedule as “Critical Reflections.”

Here is my suggested general strategy for working on assignments:

1. Start early—don’t wait. That will give you time to work through the problems and get help as
needed.

2. When you run into a problem, spend 5-10 minutes trying to solve it on your own.

3. Then take a break. Sometimes this will allow you to come back and see something you missed.
Letting your subconscious work on it for a while (unsupervised, so to speak) will often lead to useful
ideas.

4. If you’ve spent 20-30 minutes and still are stuck, post your question on ELMS. We are here to help
each other, so don’t beat your head against a brick wall—ask for help! When you post, provide as
much information as you can. Often it helps to post a screenshot with the problem.

5. I will respond as soon as I am able, usually within a day.

6. If you see a question on the discussion board that you can answer, or if you have an idea, please
respond. Don’t wait for me. You will be helping your colleagues.

6 Textbooks & Readings
There is no book required for this course. Instead, we will make use of the following freely available
websites/tutorials:

• Charles R. Severance, Python for Everybody: Exploring Data Using Python 3 ISBN-13: 978-1530051120
http://py4e.com

• The Python Tutorial, v3.7.2, Python Software Foundation https://docs.python.org/3/tutorial/

index.html

• Object-Oriented Programming in Python, University of Cape Town https://www.cs.uct.ac.za/

mit_notes/python/

Other readings (generally available online, or through Library subscriptions) may be assigned as needed.

7 Required Technology
• Laptop: We will do programming in class, so bring your laptop and be prepared to write code. Any

current OS can be used. If you do not have access to a laptop, contact me immediately.

• Python: The Python interpreter (version 3). This programming platform is freely available from
https://www.python.org/downloads.*

• Code Editor: An advanced text editor (such as Sublime Text, Notepad++, or BBEdit) and/or an
integrated development environment (such as NetBeans, Eclipse, or PyCharm).*

*Please note that we will install all necessary environments together in class during the first week.

3

http://py4e.com
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://www.cs.uct.ac.za/mit_notes/python/
https://www.cs.uct.ac.za/mit_notes/python/
https://www.python.org/downloads


8 Grading
Your final grade for the course is computed as the sum of your scores on the individual elements below
(100 possible points total), converted to a letter grade:

A+ 97-100
A 93-96.99
A- 90-92.99

B+ 87-89.99
B 83-86.99
B- 80-82.99

C+ 77-79.99
C 73-76.99
C- 70-72.99

D+ 67-69.99
D 63-66.99
D- 60-62.99

F 0-59.99

Final grades will be calculated based on the following components:

Module Exercises/Quizzes (20) 20 points
Homework (5) 25 points
Midterms (2) 20 points
Final Project 15 points
Reflections (3) 10 points
Participation 10 points

TOTAL 100 points

9 University Course Policies
The essential purpose of the university’s undergraduate course policies is to enable all of us to fully
participate in an equitable, accessible and safe academic environment so that we each can be challenged
to learn and contribute most effectively. They address issues such as academic integrity, codes of conduct,
discrimination, accessibility, learning accommodations, etc. We are all responsible for following the policies
at http://www.ugst.umd.edu/courserelatedpolicies.html. You must read them and send me any questions
by the first week of classes.

10 Late Work
Precise submission instructions are provided on individual assignments, but as a general rule the on-time
submission window will close in ELMS at the beginning of class on the date due. If you have to miss a
deadline, you should inform me as soon as possible, indicating the reason and when you propose to submit
your work. If you have a legitimate reason, such as a major medical or family emergency, I may agree to
an extension or makeup work, which I will grade before the end of the semester. Documentation of the
emergency (e.g. a doctor’s letter) may be required.

11 Syllabus Revision Policy
This syllabus is a guide for the course and is subject to change with advance notice. Changes will be
posted in ELMS. The ELMS course site is the definitive location for all course work, and communication,
including class schedules, assignments and deadlines.

12 Course Schedule
The following table shows the most current version of the planned schedule. The course content can be
roughly divided into three interrelated units:

• Unit 1: Procedural Programming Review Using Python (∼weeks 1-5)

• Unit 2: Object-Oriented Programming Using Python (∼weeks 6-11)

• Unit 3: Data Analysis Using Python (∼weeks 12-16)

4

http://www.ugst.umd.edu/courserelatedpolicies.html


Week Monday Wednesday Friday

1
08/26 Introduction:

Syllabus & Overview
08/28 Module 1:

Fundamentals
08/30 Module 1:

Fundamentals

2
09/02

LABOR DAY
09/04 Module 2:

Functions & Iteration
09/06 Module 2:

Functions & Iteration

3
09/09 Module 3:

Data Types
09/11 Module 3:

Data Types
09/13 Module 3:

Data Types

4
09/16 Module 4:
Serialization &
File I/O HW1

09/18 Module 4:
Serialization &

File I/O

09/20 Module 4:
Serialization &

File I/O

5
09/23

Catch up & Review
09/25

Midterm #1

09/27
Asynchronous Activity

TBA

6
09/30 Module 5:

OOP Fundamentals
10/02 Module 5:

OOP Fundamentals
10/04

Critical Reflection #1

7
10/07 Module 6:

Inheritance &
OOP Patterns

10/09 Module 6:
Inheritance &
OOP Patterns

10/11 Module 6:
Inheritance &

OOP Patterns HW2

8
10/14 Module 7:

Regular Expressions
10/16 Module 7:

Exceptions & Logging
10/18 Module 7:

Regex & Exceptions Lab

9
10/21 Module 8:

Databases and SQL HW3
10/23 Module 8:

Databases and SQL
10/25 Module 8:

Databases and SQL

10
10/30 Module 9:
Testing HW4

10/30 Module 9:
Testing

11/01 Module 9:
Testing

11
11/04

Critical Reflection #2
11/06

Catch up & Review
11/08

Midterm #2

12
11/11 Module 10:
Data on the Web

11/13 Module 10:
Data on the Web

11/15 Module 10:
Data on the Web

13
11/18 Module 11:

Data Analysis HW5
11/20 Module 11:

Data Analysis
11/22 Module 11:

Data Analysis

14
11/25

Final Project Clinic
11/27

THANKSGIVING BREAK
11/29

THANKSGIVING BREAK

15
12/02

Critical Reflection #3
12/04

Final Presentations
12/06

Final Presentations

16
12/09

Final Presentations

5


